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Here we perform a systematic exploration of the use of distance con-
straints derived from small angle X-ray scattering (SAXS) measurements
to ®lter candidate protein structures for the purpose of protein structure
prediction. This is an intrinsically more complex task than that of apply-
ing distance constraints derived from NMR data where the identity of
the pair of amino acid residues subject to a given distance constraint is
known. SAXS, on the other hand, yields a histogram of pair distances
(pair distribution function), but the identities of the pairs contributing to
a given bin of the histogram are not known. Our study is based on an
extension of the Levitt-Hinds coarse grained approach to ab initio protein
structure prediction to generate a candidate set of Ca backbones. In spite
of the lack of speci®c residue information inherent in the SAXS data, our
study shows that the implementation of a SAXS ®lter is capable of effec-
tively purifying the set of native structure candidates and thus provides
a substantial improvement in the reliability of protein structure predic-
tion. We test the quality of our predicted Ca backbones by doing struc-
tural homology searches against the Dali domain library, and ®nd that
the results are very encouraging. In spite of the lack of local structural
details and limited modeling accuracy at the Ca backbone level, we ®nd
that useful information about fold classi®cation can be extracted from
this procedure. This approach thus provides a way to use a SAXS data
based structure prediction algorithm to generate potential structural hom-
ologies in cases where lack of sequence homology prevents identi®cation
of candidate folds for a given protein. Thus our approach has the poten-
tial to help in determination of the biological function of a protein based
on structural homology instead of sequence homology.
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Introduction

As a result of the tremendous progress in large-
scale DNA sequencing projects,1,2 the rapid growth
in accumulation of biological sequence information
has put strong pressure on the structural biology
community to produce structural information for
new genes with high throughput. Experimentally,
large scale structural genomics projects have been
ing author:

angle X-ray
alk; dRMS, distance
Ca root mean square
initiated to streamline X-ray crystallography and
NMR measurements at a factory scale, aiming to
determine all (1000 to 10,000) available protein
folds within a few decades or even years.3 How-
ever, this progress by no means weakens the
importance of ab initio protein structure prediction
tools. On the contrary, dif®culties of crystallizing
many proteins, and limitations in the NMR
approach increase the need for powerful prediction
algorithms to offer maximal structural information
for a large number of unknown proteins. It is well-
known that the conservation of fold structures is
more robust than the conservation of protein
sequences, and that there exists signi®cant corre-
lation between structure and biological function
which is lately being explored systematically.4 ± 6
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Structural homology is thus a very powerful tool
by which we can assign functions in silico to new
genes which bear only remote if any association
with known genes in terms of sequence homology.
For this purpose, a suf®ciently high-quality predic-
tion of the structure is crucial in order to capture
the unique feature of the fold of a given protein
against all other folds. There have been many dis-
cussions as to how good structure prediction must
be in order to provide meaningful functional
information.7,8 Recently considerable progress has
been made in ab initio protein structure prediction
and fold recognition which are bene®ting from the
ever-increasing structure databases,9,10 and it has
been suggested that low-to-moderate resolution
structural models produced by state-of-the-art
structure prediction algorithms are suf®cient to
identify protein active sites and thereby provide
pointers to function.11,12

The input of physical constraints from a variety
of experiments can greatly aid both the ef®ciency
and reliability of structure prediction algorithms.
In particular, it has been shown that NMR-based
distance constraints can be used to substantially
improve structure prediction.13 ± 15 Here, we present
an algorithmic approach which uses physical con-
straints derived from small angle X-ray scattering
(SAXS) experiments to improve the quality of pro-
tein structure prediction. Because SAXS measures
X-ray scattering from a protein in a relatively
dilute solution it avoids the need to crystallize the
protein and also allows measurements of protein
conformations in nearly physiological conditions.
Despite limitations in resolution resulting from the
orientational averaging of the molecules in sol-
ution, SAXS yields physical information about the
internal pair distribution of a molecule in its native
state and is relatively easy to obtain. We show that
use of this data can provide a substantial improve-
ment in the reliability of protein structure predic-
tion and that the resulting low resolution
structures are capable of generating potential struc-
tural homologies in cases where lack of sequence
homology prevents identi®cation of candidate
folds for a given protein. Thus the use of SAXS
measurements as constraints on structural predic-
tion algorithms may be expected to contribute to
the effective operation of high throughput structur-
al genomics and ultimately to its application in
identifying the function of unknown genes.

Our approach to protein structure prediction
incorporates SAXS data into the following general
strategy: ®rst a sampling procedure is used to gen-
erate a set of decoys with both native-like structur-
al features and suf®cient structural diversity for
extensive sampling of protein folds, then several
physical ®lters (including a ®lter based on SAXS
data) are used to select a small number of promis-
ing native-like structures. This strategy has been
shown to be successful in ab initio protein structure
prediction.16,17 Its advantages are threefold: First, it
is very generic and ¯exible and both of its two
stages, namely sampling and selection, are inde-
pendently open to a variety of improvements (such
as new models to represent protein conformations
and new ®lters for selection etc); Secondly, the
requirement on the energetic score function is less
demanding compared with that needed for folding
simulations where it must be suf®ciently accurate
to guide a miss-folded protein to its native state.
This strategy is therefore much more tolerant to
the use of simple models with signi®cant coarse-
graining and other approximations.18 Thirdly, it
can be easily implemented in parallel allowing for
a huge set of candidate structures to be generated
and evaluated at the same time.

Here, we implement this strategy at two levels
of structural detail: diamond lattice walks (DLW)
and off-lattice Ca backbones. At the ®rst level, we
perform an exhaustive enumeration of all self-
avoiding walks on the diamond lattice within a
given bounding volume, and then apply a combi-
nation of ®lters to select a limited set of walks for
further re®nement and selection; at the second
level, we use the SAXS score to guide off-lattice
relaxation and residue decoration in order to gen-
erate Ca backbones from the selected diamond lat-
tice walks. Further ®ltering is then performed to
select a small number of native-like structures.

The use of diamond lattice models to study pro-
tein conformations at low resolution has been well
established by Hinds and Levitt.18 Further hier-
archical re®nement toward all-atom models has
been pursued recently by the Levitt Group.16

Although following a similar strategy, our
approach is novel in the following two aspects: (1).
We incorporate new physical constraints in which
information about the distribution of inter-atomic
pairwise distances implicit in the one-dimensional
SAXS data is used to help to guide the prediction
algorithm. It is well-known that even a small num-
ber of speci®c inter-residue distance constraints
(obtained by NMR experiments) can be very effec-
tive in ®ltering out non-native structures and
greatly improve the performance of structure pre-
dictions.13 ± 15 The purpose of the present paper is
to establish the effectiveness of the use of the
``non-speci®c'' inter-residue distance distribution
provided by SAXS measurements as a physical
constraint to protein structure enumeration.
Reliable algorithms have been developed to recon-
struct a low-resolution 3D electron density map of
protein native conformation from one-dimensional
SAXS data, which can reproduce the shape of the
native structure with moderate accuracy, allowing
for any topology of the target structure without
prior estimation of its dimension.20 With further
improvement of the experimental resolution and
re®nement algorithms, Svergun and collaborators
have recently shown that one can even extract the
non-speci®c positional information at the residue
level with relatively high accuracy with only the
mapping of the polypeptide chain onto the residue
positions undecided.21

Here, we go beyond these reconstructions of
electron density to provide a physical map of the
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polypeptide chain. To do this we adopt a straight-
forward way of employing SAXS data as a physi-
cal ®lter, where a SAXS score is de®ned as a linear
combination of the root mean square (RMS) devi-
ation and cross-correlation coef®cient between the
SAXS data of the native and candidate con-
formations20 (see Methods). Our motivation is to
establish the effectiveness of a SAXS ®lter in
screening a decoy set and in particular to evaluate
the level of improvement of its screening perform-
ance when combined with the widely used ener-
getic ®lters. To the best of our knowledge, this
work is the ®rst to assess and employ a SAXS ®lter
systematically in protein structure prediction.

(2). We further explore the effectiveness of struc-
tural homology searches based on the native-like
Ca backbones predicted by our algorithm. Since
the ultimate goal of protein structure prediction is
to provide functional information for a target,
which in turn may be closely associated with its
structural features at a variety of fold hierarchy
levels, it is of practical interest to evaluate the
SAXS-guided predictions by using them to ascer-
tain the fold family to which a target protein
belongs. Here we adopt the Dali structural domain
classi®cation where a hierarchy of four levels (fold
space attractor, fold topology, functional family
and sequence family) is de®ned.22 This structural
comparison is implemented by using the LGA pro-
gram developed by Zemla at Livermore National
Laboratory,23 which allows more ¯exible structural
alignment than is provided by the standard coordi-
nate RMSD. Our preliminary test of structural
homology identi®cation on a list of 12 target pro-
teins shows that the predicted Ca backbones with
the correct global topology are in most cases
capable of providing fold classi®cation information
for the target in spite of its lack of local structural
details and limited accuracy. This result is encoura-
ging and suggests that we are after all not very far
Table 1. Target proteins and parameters

Proteina Sequence length DLW len

1bdo 80 38
1btb 89 38
1ctf 68 34
1nkl 78 38
1r69 63 30
1ubq 76 38
4icb 76 38
1csp 67 34
1aa3 63 32
1leb 72 36
2ezh 65 32
1c5a 66 34
1pou 71 34
1ubi 76 36
1fwp 69 34
1apf 48 24

a Protein Data Bank (PDB) ID.32

b Length of DLW which is chosen to be an even number nearest to
c Dali domain classi®cation number DC_l_m_n_p representing fo

tional family(n) and sequence family(p).22
away from being able to turn the physical con-
straints-based structural prediction method into an
effective application for deriving functional infor-
mation. Recently Baker and collaborators have
reached similarly optimistic conclusions with
respect to ab initio protein structural genomics,24

though they use a very different approach of struc-
tural prediction based on a fragment library
derived from the known structural database25

rather than the experimentally derived physical
constraints used here. We are optimistic that high-
throughput SAXS measurements combined with
the present structural prediction algorithms (with
future improvements) can potentially contribute
signi®cantly to large-scale structural genomics, and
ultimately provide signi®cant improvements in
structure-based functional genomics.

Results and Discussion

Here, we have selected 16 target proteins which
represent a variety of domain classes (eight all a,
four all b, one a/b, three a � b) with length ran-
ging from 48 to 89. These targets were selected
based on their use in previous studies.18,25 They
are not used in compilation of the statistical
energy.18 In selecting the targets, the only major
criterion is that the sequence length should not be
long (<90), which is a limitation resulting from our
current implementation of the use of the diamond
lattice model. See Table 1 for the list of targets and
the relevant parameters.

Diamond lattice representation and
exhaustive enumeration

The diamond lattice representation18 used here is
intended to capture the overall topology of the
protein's native conformation at a low resolution.
No secondary structure or side-chain orientation
gthb Fold class Dali domain ID no.c

b DC_4_12_1
a/b DC_1_81_1
a/b DC_5_4_2
a DC_3_166_2
a DC_3_257_1

a/b DC_2_65_3
a DC_3_241_1
b DC_4_8_12
a DC_3_254_1
a DC_3_161_1
a DC_3_167_1
a DC_3_57_2
a DC_3_257_1
b DC_2_65_3

a/b DC_5_2_37
b DC_7_434_1

half the sequence length with the maximal cutoff at 38.
ld space attractor region(l), globular folding topology(m), func-
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information is included in it. This representation
has been proven to be a good starting point for
hierarchical modeling of protein structure with
more details added at different levels.16 In most
cases it can represent conformations of small pro-
teins with a best dRMS ®t of around 3 to 4 AÊ (see
Table 2), regardless of the detailed architecture or
secondary structures of the targets. The represen-
tation performs better for shorter sequences, which
is because of more extensive sampling and better
®t to the constraint volume.16,18

The size and shape of the bounding volume play
a crucial role in determining the ef®ciency and
accuracy of this algorithm: a larger volume results
in exponentially longer searches while a smaller
volume or wrong shape may cause the failure of
exhaustive enumeration which may miss the rel-
evant native-like diamond lattice walks. Therefore,
we expect that the incorporation of a more detailed
shape constraint derived from SAXS data could
lead to considerable improvement of the present
algorithm (work in progress).

Filtering at the diamond lattice walk level

After completing the exhaustive enumeration of
106-107 self-avoiding diamond lattice walks (DLW)
we proceed to applications of multiple ®lters to
select 1000 DLW for re®nement at the next level.
At the DLW level the following physical ®lters are
used (they will also be used at the next level):
radius of gyration (FRg), HP ®tness score (Fhp), bur-
ial score (Fburial), statistical energy (Fstat) and SAXS
score (Fsaxs). The de®nitions of these ®lters are
given in Methods. FRg has been extensively used to
select compact structures;18 Fhp and Fburial com-
bined are able to optimize the prediction by favor-
ing the formation of a hydrophobic core which has
Table 2. Statistics of the enumeration and selection of DLW

Top 1000 DLW dRMS (AÊ )a T

Protein Min Mean Mwan-shift Min

1bdo 5.402 6.487 ÿ0.5690 5.146
1btb 4.197 6.137 ÿ0.5950 4.197
1ctf 4.099 5.397 ÿ0.6200 4.070
1nkl 4.247 5.846 ÿ0.2560 4.247
1r69 3.802 4.801 ÿ0.4960 3.379
1ubq 4.055 5.625 ÿ0.5260 4.055
4icb 4.337 5.291 ÿ0.4190 4.059
1csp 4.311 5.606 ÿ0.6860 4.311
1aa3 4.556 5.851 ÿ0.1530 4.283
1leb 4.499 5.823 ÿ0.2510 4.385
2ezh 4.824 6.070 ÿ0.2330 4.731
1c5a 4.527 5.637 ÿ0.4740 4.527
1pou 4.546 5.844 0.0230 4.386
1ubi 3.816 5.572 ÿ0.7630 3.816
1fwp 3.947 5.242 ÿ0.7100 3.363
1apf 3.813 5.165 ÿ0.7190 3.621

a dRMS distribution statistics: minimum, mean, and mean shift (re
Ca backbones re®nement.

b dRMS distribution statistics: minimum, mean, and mean shift (
by FRg.

c dRMS distribution statistics: minimum, mean of all DLW enume
been shown to be essential to the establishing of a
protein's native fold.26 Fstat is the knowledge-based
pairwise contact energy de®ned by a 20 by 20
score matrix derived from the statistical analysis of
a selected set of representative protein structures.18

All the above ®lters or similar ones are widely
used in modeling and predicting protein struc-
tures. One should keep in mind that these ®lters
overlap each other in capturing the features of
native conformations, so their performances are
not simply additive. Their performances are also
limited by the resolution intrinsic to the model in
use, since the diamond lattice model used at this
level can only resolve different vertices rather than
each individual residue (two to three residues per
vertex). So we can expect additional ®ltering
power by re-using these ®lters after re®ning the
structural representation to higher resolution at the
next level. We also introduce a new ®lter based on
SAXS data: Fsaxs (see Methods for detail of its de®-
nition and computation) which basically represents
the similarity in SAXS intensity pro®les between
the given structure and the native structure.

Now we proceed to present the performance of
each of the above ®lters at the DLW level (Table 2).
We plot the dRMS distribution of DLW ®ltered by
FRg, Fhp, Fburial and Fstat, respectively for 1ctf
(Figure 1): In all cases, the distribution is pushed
substantially (0.5 AÊ or larger) to the lower end of
dRMS, which proves the effectiveness of these
physical ®lters and is consistent with their rel-
evance to protein folding principle and previous
work16,18. We also tested Fsaxs as a single ®lter
(data not shown), which however shows no signi®-
cant overall shift in its dRMS distribution: although
native-like DLW (with small dRMS) tend to
accumulate into the low Fsaxs region, at the same
time, a substantial fraction of non-native DLW
op 10,000 DLW dRMS (AÊ )b All DLW dRMS (AÊ )c

Mean Mwan-shift Min Mean

6.649 ÿ0.4070 4.40 7.056
6.249 ÿ0.4830 4.12 6.732
5.697 ÿ0.3200 3.41 6.017
5.926 ÿ0.1760 3.24 6.102
4.861 ÿ0.4360 3.03 5.297
5.895 ÿ0.2560 3.82 6.151
5.506 ÿ0.2040 3.51 5.710
5.816 ÿ0.4760 3.73 6.292
5.866 ÿ0.1380 3.42 6.004
5.932 ÿ0.2080 3.74 6.074
6.205 ÿ0.0980 3.15 6.303
6.017 ÿ0.0940 3.21 6.111
5.823 0.0020 3.30 5.821
5.864 ÿ0.4710 3.58 6.335
5.400 ÿ0.5520 3.33 5.952
5.303 ÿ0.5810 3.06 5.884

lative to all DLW) of the 1000 DLW selected for the next step of

relative to all DLW) of the 10,000 most compact DLW selected

rated within the given constraint volume.



Figure 1. dRMS distribution of
DLW for 1ctf ®ltered by FRg (a), Fhp

(b), Fburial (c) and Fstat (d). The con-
tinuous lines are for all DLW
(about 2.6 � 107), broken lines for
top 1 % DLW (2.6 � 105) and dot
dashed lines for top 0.01 % DLW
(2.6 � 103). The distribution is
shifted to the lower end of dRMS
by about 0.5 AÊ or more after ®lter-
ing.
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(with large dRMS) also spread to this region, so
the distribution becomes broader as we apply Fsaxs

progressively. This is because of the intrinsic struc-
tural degeneracy associated with the SAXS ®lter,
namely that two different DLW can have a close
Fsaxs score as long as they share a similar density
map, disregarding the order of vertices being tra-
versed by the walks. The density map of the native
structure is most likely highly degenerate in
accommodating different walks. This requires us to
make cautious use of the SAXS ®lter in combi-
nation with other ®lters, keeping in mind that a
low SAXS score is only a necessary rather than suf-
®cient condition to select a native-like structure.
We will assess the performance of the Fsaxs in detail
at the next level.

The above result shows that in spite of the lack
of local structural information (such as secondary
structure) the simple low-resolution lattice model-
ing and the physical ®lters applied to it indeed
provide an effective approach for the represen-
tation and selection of native conformations
because it to some extent captures several import-
ant features characteristic of native structures, such
as the formation of a hydrophobic core, its com-
pactness etc. However, due to the limitation of low
resolution and the coarse-grained nature of this
simple model, it is unlikely to effectively eliminate
most mis-folded structures (which tend to remain
even after ®ltering and lead to wide spread distri-
bution of dRMS of low energy structures) and to
obtain a small set of high-quality native-like struc-
tures at this level. Thus we only perform a moder-
ate ®ltering (down to 1000 candidates) at the DLW
level and leave further re®nement and discrimi-
nation to the next level where Ca backbones are
generated.

Here is how we select the 1000 DLW to be used
in the next stage:

As shown in Table 2, we ®rst screen all DLW
using FRg and keep the 10,000 most compact DLW.
We then apply a combined ®lter of a heuristic
average of Fhp, Fburial, Fstat, and Fsaxs and keep the
top 1000 DLW. After this screening process, the
average dRMS is shifted (range: 0.15 to 0.76 AÊ ) to
the lower end (see Table 2). A heuristic combi-
nation of multiple ®lters is used so that they can
complement each other and no ®lter needs to be
too strict or over-used. We expect to achieve a
more stable ®ltering performance in this way than
by applying any individual ®lter alone. We also
tried other possibilities of ordering and combining
the above ®lters and did not ®nd a ®ltering scheme
with signi®cantly better overall performance.
Although we cannot exclude the existence of an
optimal ®ltering scheme other than the heuristic
one used here, considering the low-resolution of
our lattice model and the moderate ®ltering strat-
egy, strict optimization does not pose a crucial
issue here.

Generation of Caaa-backbones from 1000
diamond lattice walks

After the moderate ®ltering at the DLW level in
the last step, we have 1000 DLW containing a
much higher fraction of native-like conformations
than the original huge set of all DLW.18 Due to the
limitation of resolution intrinsic to the lattice
model, the coarse-grained representation must be
augmented to the residue level in order to have a
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structural representation which makes biological
sense. Furthermore, a more detailed structural
model allows the performance of the physical ®l-
ters to be exploited more thoroughly so we can
further purify the set of candidate structures. There
is always a trade off between the extent of sophisti-
cation in structural representation and the
feasibility of computation. As a result of this com-
promise, we choose to work with the Ca backbone
representation. It is well known that the Ca back-
bone retains most of the structural features of
native conformations, from global topology to local
secondary structures. Given a suf®ciently accurate
model of Ca backbones, an all-atom model can be
built in a relatively straightforward manner by
side-chain packing.27,28

To generate a Ca backbone from a given DLW
where the positions of residues assigned between
neighboring vertices are ambiguous, we must
work out a way to position all residues close to the
given DLW while satisfying the constraints given
by biochemistry. Due to the sharply increased
number of degrees of freedom compared with that
in the DLW representation, a sampling procedure
is necessary to locally explore con®gurations near
the starting DLW.

The Ca backbone generation procedure consists
of the following two steps:

(1) Relax vertices from the diamond lattice by
simulated annealing to optimize the SAXS score.
This procedure is to remove the artifacts in the
local geometry introduced by the lattice model and
reshape the structure according to the known
SAXS pro®le. In order to keep the global topology
of the original DLW, each vertex is con®ned to
within a distance cutoff from its starting position
on the diamond lattice.

(2) Decorate inter-vertex residues onto the DLW,
subject to the following geometry constraints
characteristic of protein Ca backbones: (a) the near-
est neighbor Ca-Ca distance is close to 3.8 AÊ , (b)
the Ca bond angle is larger than 1rad29, (c) no two
residues are within 2 AÊ in distance. The sampling
process is quite straightforward: local rotations of
short fragments up to three residues long are
attempted along the sequence accompanied with
local optimization of the statistical energy (Fstat).
This local optimization is justi®ed under the prop-
osition that the native pairs of contacting residues
are already brought to proximity by the native top-
ology at the DLW level so that a local adjustment
is expected to push them ®nally into contact.

This procedure preserves the low resolution top-
ology captured by the DLW without necessarily
re®ning the secondary structure. This makes the
approach generic and not susceptible to possible
errors introduced by secondary structure predic-
tions. Indeed, a signi®cant fraction of secondary
structures depend on their tertiary structure
environment as well as their local sequence and
cannot be predicted with con®dence without
knowing the tertiary structure in the ®rst place. As
shown by Levitt's group,16 the secondary structure
®tting procedure they used does not signi®cantly
change the cRMS distribution of decoy sets, though
it does improve the number of native contacts due
to hydrogen bonding within secondary structures.
Thus it is reasonable to believe that it is the overall
topology captured by the Ca backbones that plays
the essential role in determining the global quality
of a predicted structure.

Through this procedure, we can generate native-
like Ca backbones with cRMS around 6 AÊ for most
of our targets, regardless of their folds and second-
ary structure compositions. In particular, its per-
formance on b-strand dominated targets is almost
as good as a-helix dominated targets: out of the
four all b targets, three have the best native-like Ca

backbones with cRMS less than 6 AÊ . We attribute
this to the extensive sampling at the DLW level
which helps to increase the chance of representing
conformations with signi®cant number of non-local
interactions characteristic of b-strands dominated
structures. In Figure 2, we show the structural
alignment between the native-like Ca backbones
and the experimental structures for a number of
targets. One can see the backbones indeed rep-
resent the native topology in a satisfactory way.

Assessment of the SAXS filter

In this subsection we present our assessment of
the SAXS ®lter (Fsaxs) at the Ca backbone level
which is the crucial part of this work. Our purpose
is to quantify its additional ®ltering power when
used to supplement the action of the other avail-
able ®lters used here. It is in principle possible to
combine all the above ®lters in an optimal way
through supervised learning or other training pro-
cesses. However for the purpose of ®lter assess-
ment we prefer to separate them at different levels
so that their individual ®ltering power can be ana-
lyzed separately. In particular, we apply the ``old''
energy ®lters (Fhp, Fstat) before using the new SAXS
®lter (though we did make use of the SAXS score
to do off-lattice relaxation in the previous step), in
order to assess the ``additional'' ®ltering power
due to the new ®lter. This is an objective strategy:
because of the possible correlation among these ®l-
ters, a ®lter used earlier tends to be more effective
than being used later. Therefore, saving the new
SAXS ®lter to the last stage provides a reasonably
stringent test of its ®ltering power.

Let us de®ne the top ten Ca backbones with the
smallest cRMS to the target as ``native-like'' back-
bones. Our aim is to capture at least one of them
by applying our ®lters. We use a ``purifying fac-
tor'' (pF) to quantify the performance of a given ®l-
tering scheme. pF is de®ned as the ratio between
the concentrations of native-like backbones after
and before the ®ltering. A value of pF > 4 is con-
sidered very effective purifying, while a pF close to
1 means poor performance. Anything in between is
seen as marginally effective.

For the purpose of SAXS ®lter assessment we
perform a two-round ®ltering procedure:



Figure 2. Comparison of Ca backbones between the
predicted structures (blue) and the experimental struc-
tures (red) for 1ctf(a), 1btb(b), 1r69(c), 1nkl(d). The struc-
tural alignment is generated by LGA (GDT mode,
DIST � 5 AÊ ). The corresponding cRMS is 5.66 AÊ (a),
6.55 AÊ (b), 5.34 AÊ (c) and 5.81 AÊ (d). It is observed that
the predicted Ca backbones capture the global topology
of the native structures although there exist some local
structural distortions.
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First, the energy ®lters (Fhp, Fstat) are applied one
by one to ®ltering 1000 Ca backbones down to N
(N � 200,100,50,20,10), and record the correspond-
ing purifying factor pF1 as a function of N or
pF1(N) . Then select the maximum pF1,max which
occurs at N � N1,max, representing the maximal ®l-
tering power of the energy ®lters.

Second, we sort the resulting N1,max Ca back-
bones using the SAXS ®lter (Fsaxs) and keep the top
N � f ( where 0 < f < 1). We then study the corre-
sponding purifying factor pF2 at this round as a
function of f and record its maximum pF2,max at
f � f2,max. We use pF2,max to represent the additional
®ltering power gained by using Fsaxs subsequent to
the use of the energy ®lters.

The results are shown in Table 3, where we also
list the best ranks of the ten native-like backbones
before and after using the SAXS ®lter. The results
are summarized as follows:

(1) Out of all 16 targets, the new best rank is sig-
ni®cantly improved in 13 of them, while in the
remaining three, two of them have the old best
rank already in the top ten. Only in one target
(1fwp) does the SAXS ®lter fail, together with the
energy ®lters (neither is able to select at least one
native-like backbone in top ten).

(2) By examining the purifying factors, we ®nd
that out of all 16 targets, a pF2 > 4 is achieved in
11of them, which suggests a signi®cant purifying
effect of Fsaxs, while in the remaining ®ve, three
show marginal purifying effect (2EpF2 < 4) and
two show none. We further notice that in the six
targets where the energy ®lters perform poorly or
marginally (pF1 < 4), four of them are compensated
by good Fsaxs performance (pF2 > 4).

The above results clearly show that the use of
the SAXS ®lter signi®cantly improves the selection
of native-like backbones in combination with the
energy ®lters. (Note: there are many other possible
combinations for the ®rst round of ®ltering with-
out Fsaxs, our motivation is to maximize its overall
performance, so we pick only Fstat and Fhp which
perform better than FRg and Fburial in terms of
single ®lter performance. We also tried including
FRg or Fburial but this mostly resulted in worse if
not similar overall performance.)

In order to establish algorithms for structure
prediction incorporating SAXS-based physical
constraints, we have used simulated SAXS data
obtained from the known structures of a test set
of proteins in the Protein Data Bank. At the ®rst
stage of algorithm testing reported here, where
side-chains are not included in the modeling, we
use simulations done at a much simpli®ed Ca

backbone level using the Debye formula (see
Methods). In order to relate the results of this
simpli®ed approach to experimental data, we
also tested the use of simulations at the all-
atom, solvent contrast level provided by the pro-
gram CRYSOL.19 In a preliminary study we ®nd
that, at the relatively low level of resolution
implicit in the production of Ca backbones, the
performance based on the more realistic CRY-
SOL simulations is somewhat reduced relative to
that obtained with use of the simpli®ed model,
although still signi®cantly better than results
obtained without the use of a SAXS ®lter. At a
later stage of algorithm development in which
side-chains are included, we expect the use of
realistic data simulation, or actual data, to be an
essential step in improving ®lter performance.

Despite the positive results we just obtained,
there are still concerns about the possibility that
our target list may not be representative or that the
result may depend on the approach we use to gen-
erate Ca backbones. In order to exclude such possi-
bilities and establish our conclusion ®rmly, we
proceed to test the ®ltering power of Fsaxs on the
selected decoy sets for 34 targets generated by
Rosetta.9 The result is shown in the lower part of
Table 3. To select these decoy sets, we exclude
fragmentary ones which may not preserve the
SAXS pro®le of the whole native structure and
those with low prediction quality (minimum



Table 3. Statistics of generated Ca backbones and performance assessment of SAXS ®lter

Protein
Top 10 backbonesc

RMS (AÊ )a

All 1000
backbones cRMS

(AÊ )b
Old best

rankc
New best

rankd
pF of

1st filteringe
pF of

2nd filteringf

1bdo 7.665-8.311 7.665-14.119 17(8.06) 3(8.31) 6.122 4.083
1btb 6.547-7.401 6.547-13.498 5(7.37) 5(7.37) 9.091 1.833
1ctf 5.658-6.306 5.658-11.613 8(6.15) 1(5.93) 11.11 4.500
1nkl 5.811-6.590 5.811-12.158 85(6.52) 5(6.59) 2.326 7.167
1r69 5.338-6.044 5.338-10.590 12(5.70) 3(5.70) 5.000 5.000
1ubq 5.615-6.683 5.615-13.001 17(6.15) 3(6.15) 4.762 5.250
4icb 6.570-7.257 6.570-12.064 67(7.24) 24(7.19) 1.980 2.020
1csp 5.748-6.551 5.748-12.187 46(6.18) 26(6.34) 4.008 1.064
1aa3 5.357-6.309 5.357-11.135 36(6.31) 1(6.31) 9.091 5.500
1leb 6.104-6.891 6.104-12.252 28(6.45) 0(6.45) 9.091 11.00
2ezh 6.166-6.433 6.166-11.872 49(6.17) 5(6.17) 2.000 8.333
1c5a 5.888-6.319 5.888-11.150 6(6.32) 7(6.32) 10.00 1.250
1pou 5.952-6.947 5.952-11.583 72(6.90) 0(6.90) 2.000 50.00
1ubi 5.737-7.074 5.737-13.046 133(7.04) 9(7.04) 2.020 4.950
1fwp 6.097-6.679 6.097-12.535 23(6.57) 28(6.40) 3.000 2.128
1apf 5.174-5.719 5.174-11.419 3(5.58) 0(5.58) 9.091 11.00

1bdo 6.578-7.726 6.578-16.655 36(7.61) 16(7.65) 3.996 2.500
1btb 6.273-7.849 6.273-18.272 25(7.58) 5(7.34) 3.996 4.167
1ctf 3.282-3.569 3.282-12.534 8(3.42) 6(3.37) 18.164 1.10
1csp 4.389-5.153 4.389-19.539 141(4.46) 71(4.46) 0.999 2.439
1aa3 1.858-3.689 1.858-16.049 39(3.45) 4(3.45) 3.996 5.000
2ezh 2.640-3.061 2.640-23.150 44(2.77) 2(3.04) 1.998 16.67
1fwp 5.788-6.634 5.788-15.995 89(5.79) 3(5.79) 0.999 25.00
1apf 4.809-5.752 4.809-17.139 26(5.729) 20(5.73) 1.998 2.381

1acf 6.441-8.356 6.441-22.448 93(8.36) 4(8.24) 1.498 13.33
1svq 5.524-7.208 5.524-20.792 98(6.98) 14(7.21) 0.999 6.667
1pal 6.946-7.926 6.946-18.961 74(7.45) 0(7.45) 0.999 100.0
2fha 6.946-7.927 5.908-27.686 17(8.24) 3(7.66) 3.996 6.250
1pdo 6.059-7.512 6.059-31.307 7(7.14) 5(7.14) 5.258 3.167
2ktx 2.137-3.181 2.137-7.608 9(3.03) 5(3.03) 5.258 3.167
1kte 5.036-7.139 5.036-21.502 12(5.68) 5(5.68) 5.258 3.167
2ncm 7.070-8.702 7.070-22.698 86(7.80) 23(7.80) 0.999 4.167
2pac 4.899-5.658 4.899-18.423 18(5.37) 3(5.37) 5.258 4.750
1ail 2.452-4.749 2.452-16.663 4(4.74) 8(4.75) 9.082 1.222
1lfb 3.545-4.804 3.545-15.805 75(4.31) 3(4.31) 0.999 25.00
1aj3 5.513-6.963 5.513-18.213 33(6.49) 29(6.49) 1.998 1.667
1eca 5.705-7.309 5.705-24.740 69(6.98) 51(6.98) 0.999 1.923
1erv 5.678-7.326 5.678-24.149 1(6.03) 0(6.03) 9.082 11.00
1ark 4.252-4.474 4.252-14.576 176(4.34) 17(4.45) 0.999 5.556
1msi 5.703-6.684 5.703-14.832 2(6.40) 1(6.41) 9.082 5.500
1ris 4.643-6.560 4.643-18.808 8(4.64) 9(4.64) 5.258 1.900
5icb 3.828-4.288 3.828-12.298 66(4.23) 12(4.24) 0.999 7.692
5pti 4.849-5.706 4.849-15.765 39(4.94) 3(5.62) 1.998 12.50
1gb1 1.953-2.768 1.953-15.525 33(2.67) 7(2.67) 3.996 3.125
1gpt 4.676-5.407 4.676-13.874 12(4.70) 7(4.70) 5.258 2.375
2ezk 4.611-6.233 4.611-23.446 33(5.86) 0(6.09) 1.998 50.00
1bor 4.980-5.617 4.980-11.492 96(5.29) 2(5.29) 0.999 33.33
2fdn 3.703-5.04 3.703-13.311 60(4.99) 11(4.60) 0.999 8.333
1orc 4.003-4.336 4.003-12.953 79(4.17) 6(4.08) 1.498 9.524
1tit 6.414-8.063 6.414-19.964 78(6.41) 8(6.41) 0.999 11.11

The upper part shows the results for our 16 targets while the lower part for the list of Rosetta decoys9 for 34 targets selected from
a complete list of 92 proteins based on the following criteria: (1) the decoy must be relatively complete with its length larger than
90 % of the sequence length of its target; (2) the best decoy has cRMS 47 AÊ ; (3) the 1st round of ®ltering does not dilute the density
of native-like decoys, or pF1 5 1. Among these 34 Rosetta targets, eight coincide with our target selection.

a cRMS range of the best ten Ca backbones de®ned as native-like backbones which we aim to select from the 1000 generated Ca

backbones via ®lterings.
b cRMS range of all the 1000 generated Ca backbones.
c Best rank of the ten native-like backbones by the energetic ®lter (Fstat), where the corresponding cRMS is in the bracket.
d Best rank of the ten native-like backbones by the SAXS ®lter Fsaxs after the ®rst round of ®ltering by the energetic ®lters), where

the corresponding cRMS is in the bracket.
e Purifying factor (pF) of the ®rst round of ®ltering by the energetic ®lters (Fhp and Fstat).
f Purifying factor (pF) of the second round of ®ltering by the SAXS ®lter Fsaxs.
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cRMS > 7 AÊ ). We also do not include decoy sets
where the energy ®lters perform so poorly (pF1 < 1)
at the ®rst round that it is not worth trying Fsaxs at
the second round.
We summarize the result as follows: (1) Out of
all 34 targets, the new best rank is signi®cantly
improved in 26 of them, while in the remaining
eight, seven of them have their old best rank
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already in the top ten and only in one target (1aj3)
does the SAXS ®lter fail, together with the energy
®lters (neither is able to select at least one native-
like backbone in the top ten).

(2) By examining the purifying factors, we ®nd
that out of all 34 targets, a pF2 > 4 is achieved in 21
of them, which suggests a signi®cant purifying
effect of Fsaxs, while in the remaining 13, ten show
marginal purifying effect ( 2 4 pF2 < 4) and three
show none. We further notice that in the 19 targets
where the energy ®lters perform marginally or
poorly (pF1 < 4), 15 of them are compensated by
good Fsaxs performance (pF2 > 4).

In summary both results are consistent with
each other and show that the SAXS ®lter performs
effectively in purifying native-like structures.
Therefore in general it is favorable to develop a
multi-®lter scheme including Fsaxs in order to opti-
mize the selection of native-like candidates from a
decoy set of non-fragmentary structures. We will
attempt this in the next subsection.

It is natural to ask to what extent does Fsaxs con-
tain new information relative to that already con-
tained in the other ®lters. To answer this question
we study the correlation coef®cients (c.c) between
the results of the SAXS ®lter (Fsaxs) and those of the
energy ®lters (Figure 3). It is found that there is no
signi®cant correlation between Fsaxs and Fstat (aver-
age c.c is ÿ0.033), compared with the positive cor-
relation between Fburial/Fhp and Fstat. This is
because the energy ®lters only take account of
spatially ``short range'' native contacts (with inter-
Figure 3. This Figure shows histograms for 16 targets of t
in comparison with the c.c. between Fhp and Fstat (b), and the
is at most unsigni®cant correlation between the SAXS ®lter
signi®cant discrimination power on top of the latter.
residue distance <7 AÊ ) while the SAXS ®lter con-
tains distance distribution information up to the
size of the protein although the residue identity is
not resolved. This explains why it can provide sig-
ni®cant discrimination power on top of the energy
®lters.

Predictive filtering of Caaa backbones

After establishing the effectiveness of the SAXS
®lter, we should construct a combined ®lter based
on the above ®lters including Fsaxs so that we can
apply it to the selection of a few ®nal predictions
without prior information of the structure we try
to predict. The optimal solution to this combinator-
ial problem is beyond the scope of this paper. At
this stage we will rely on heuristics rather than a
strict optimization machinery, in order to focus on
the demonstration of feasibility of this approach
while leaving further technical re®nement to future
work.

Let us ®rst examine the discrimination power of
each single ®lter (Table 4) by using the best rank of
top ten native-like Ca backbones according to each
of them. We notice that each single ®lter (except
for Fstat) is at most moderately effective in discrimi-
nating native-like structures from other structures,
partly because they were used before at the DLW
level. However considering their being mutually-
complementary in capturing different aspects of
the native structure, their combination is poten-
tially capable of performing a signi®cantly better
he correlation coef®cient (c.c.) between Fsaxs and Fstat (a),
c.c. between Fburial and Fstat (c). It is observed that there
and the energy ®lters, which explains why it provides



Table 4. Performance of single ®lters and the combined ®lter

Protein
FRg Best rank

(cRMS)
Fburial Best rank

(cRMS)
Fhp Best rank

(cRMS)
Fstat Best rank

(cRMS)
Fsaxs Best rank

(cRMS)
Fcomb

a Best rank
(cRMS)

1bdo 3(8.065) 17(8.065) 25(8.065) 19(8.301) 281(8.311) 7(8.065)
1btb 161(7.401) 263(7.367) 123(7.321) 5(7.367) 149(6.915) 3(7.367)
1ctf 87(6.229) 64(5.934) 172(5.934) 8(6.153) 113(5.905) 2(5.934)
1nkl 26(6.397) 142(6.397) 168(6.524) 85(6.524) 10(5.811) X
1r69 28(5.817) 59(5.817) 58(5.701) 12(5.701) 268(5.338) 6(5.701)
1ubq 26(5.872) 168(6.643) 90(6.332) 17(6.151) 67(5.992) 4(6.151)
4icb 58(7.147) 138(7.135) 207(7.192) 67(7.240) 137(6.570) 10(7.135)
1csp 54(6.184) 85(6.184) 96(6.474) 46(6.184) 224(6.474) 7(6.184)
1aa3 126(6.309) 58(5.645) 36(6.309) 38(6.309) 30(5.969) 12(6.309)
1leb 100(6.811) 97(6.811) 38(6.450) 28(6.450) 128(6.838) 15(6.450)
2ezh 306(6.433) 376(6.315) 140(6.388) 49(6.166) 36(6.201) X
1c5a 35(5.888) 13(5.888) 6(6.316) 54(6.316) 38(6.255) 7(6.316)
1pou 126(6.898) 193(6.898) 103(6.898) 72(6.904) 87(6.904) X
1ubi 60(6.462) 199(7.026) 133(7.037) 152(7.026) 27(6.897) X
1fwp 1(6.430) 14(6.430) 38(6.430) 23(6.567) 103(6.679) 17(6.567)
1apf 239(5.175) 55(5.175) 24(5.175) 3(5.583) 45(5.420) 2(5.583)

a Fcomb is a two-step ®lter with the ®rst step pre-screening by FRg, Fburial, Fhp and Fsaxs with a uniform fraction, and the second
step using Fstat . X represents failure to select native-like Ca backbone in top 20.
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discrimination than each individual ®lter, in par-
ticular than Fstat alone. The strategy we adopt is to
®rst moderately prescreen the dataset with ancil-
lary ®lters like FRg, Fhp, Fburial, Fsaxs and then to
apply the statistical energy ®lter (Fstat) to give a
®nal ranking of all structures. In this way, we
expect to eliminate false positive structures from
high ranking that fail to be discriminated by Fstat

alone.
Here is how we implement this strategy to

generate a ®nal set of ten Ca backbones for a given
target: (1) Prescreen using Fhp, Fburial, Fsaxs and FRg

one by one with a uniform fraction f, namely sort
all Ca backbones by each ®lter separately and
record whether or not each Ca backbone is ranking
in top f � 1000. For better tolerance against ®lter
error, one failure to meet the criterion of top
f � 1000 rank is allowed. The citerion for picking
the value of f is to pick that value out of
0.5,0.4,0.3,0.2 which ensures that the number of
backbones left after prescreening is in the range
100-200.

(2) Sort the dataset after prescreening by the stat-
istical energy ®lter Fstat.

(3) Keep the top ten (or 20) as the ®nal predicted
set.

The criterion of success (moderate success) for
the above multi-®ltering scheme is to select at least
one native-like Ca backbone within the ®nal set of
ten (20). The results are also shown in Table 4. Out
of all 16 targets, nine are selected in top ten and 12
are selected in top 20. In comparison, using Fstat

alone only three are selected in top ten and six are
selected in top 20. The results on the list of targets
suggest that the approach of multi-®lter combi-
nation is very promising in achieving a good over-
all performance, although there is ample space for
further improvement.
Structural homology search

In this subsection we report on results of using
the structures predicted above in a structural hom-
ology search with the following two purposes:
First, to evaluate the quality of our predicted Ca

backbones selected in the last step via structural
comparisons. Second, to explore in general
whether a predicted Ca backbone with correct glo-
bal topology but limited accuracy is able to cor-
rectly identify the folds structurally similar to it.

We do the structural alignment using the suite
of LGA software developed by Zemla at Livermore
National Laboratory23 which was also successfully
used in CASP4 for prediction evaluation. The pre-
dicted Ca backbones are the native-like ones
selected among top 20 for 12 target proteins by
using the above combined ®ltering scheme. The
structural homology search is performed against
the Dali domain library22 prescreened by the SAXS
®lter, aiming to capture a domain which belongs
to the same fold as the target (by sharing the same
®rst three domain numbers) or is its structural
neighbor (with the Z score of the structural
alignment larger than 2). Either case should give
clues for the determination of possible biological
function.

The results are shown in Table 5. In most cases
(eight out of 12) the predicted Ca backbone is able
to rank one structural neighbor among the top
three; ®ve out of the eight pairs of target and its
structural neighbor have sequence identity less
than 15 % (1btb:8 %, 1ctf:8 %, 1ubq:11 %, 1aa3:6 %,
1fwp:4 %) which means their structural similarity
is beyond the scope of sequence homology. Con-
sidering the limited accuracy of cRMS of around
6 AÊ and the lack of local structural details, this is
quite encouraging and suggests the importance of
global topology in deciding the protein fold.



Table 5. Summary of structural homology search using selected Ca backbones

Target protein predictiona Domain hit by LGAb LGA alignment resultc

PDB code
Dali domain

ID no.
Ca backbone

cRMS (AÊ ) PDB Code
Dali domain

ID no. Z N_align cRMS (AÊ ) Rank

1btb 1_81_1 7.37 1b9zA 3_234_1 3.2 38 (63) 2.99 1
1ctf 5_4_2 5.93 1dar 5_2_14 2.7 44 (75) 3.16 2
1r69 3_257_1 5.70 1b0n 3_257_1 11.4 41 (68) 3.55 2
1ubq 2_65_3 6.15 1alo 2_65_1 4.5 40 (79) 3.18 1
1csp 4_8_12 6.18 1ckmA 4_8_15 3.8 38 (63) 3.28 1
1aa3 3_254_1 6.31 1c3pA 7_216_1 2.7 38 (66) 3.24 1
1fwp 5_2_37 6.57 1qltA 5_9_1 2.5 41 (84) 2.76 1
1apf 7_434_1 5.18 1shl 7_434_1 3.9 26 (48) 3.13 2

a Information about the target protein predicted by our approach: its PDB code, Dali domain number,22 and cRMS of the selected
predicted Ca backbone (see Table 4) which is used to do LGA alignment.

b Information about the domain captured by LGA alignment: its PDB code (with chain speci®cation), Dali domain number and
the Z score (Z > 2 represents a signi®cant structural similarity between the domain and the target protein).

c LGA structural alignment result: N_align is the number of residues aligned within the distance cutoff DIST � 5 AÊ , cRMS is the
corresponding cRMS of these aligned residues, rank is the rank of the domain by LGA alignment score LGA_Q (see Methods).
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Overall performance

Here is a brief summary of the overall perform-
ance of our SAXS-based structural prediction
algorithm: Out of the total 16 target proteins: For
15 targets there is at least one native-like Ca back-
bone generated in the 1000 backbone samples with
reasonably small cRMS (less than 7 AÊ ). For nine
(12) targets the multi-®ltering scheme successfully
selects at least one of the top ten native-like Ca

backbones in the ®nal set of ten (20) Ca backbones.
For eight targets the selected native-like Ca back-
bone is able to capture one structural neighbor of
its target protein among the rank of top three.

We note that our success in selecting native-like
predicted Ca backbones and in the structural hom-
ology search is made for proteins spanning a var-
iety of structural families and classes. This
approach is also robust to the choice of native-like
Ca backbones: we ran structural homology
searches on all top ten native-like Ca backbones for
each target, and found successful hits for most of
them (data not shown).

The major limits to our approach are as follows:
(1) Size of the target protein: large proteins are

more likely to be poorly sampled at DLW level
and native-like Ca backbones may not be generated
using our present implementation for proteins
with more than 90 residues. (2) Discrimination
power of multi-®lters: the heuristic combination of
multi-®lters may not be optimal, it is desirable to
explore more sophisticated ways to fully exploit
the available ®lters such as clustering. (3) Overall
quality of Ca backbone samples: though proven to
be good for the purpose of structural homology
search, a signi®cant improvement in overall quality
may be achievable through re®nement and optim-
ization, which should also considerably relieve the
demand on ®lter power.

A few more comments on the structural hom-
ology search results: It is more or less surprising
that a predicted structure with a limited 6 AÊ cRMS
accuracy can be helpful in function analysis, con-
trary to the belief that a much better accuracy
(about 2 AÊ cRMS) is required for such purpose.7,8

We comment as follows: First, we attribute our
preliminary success to the use of very effective
structural comparison tool, LGA, which is much
more sensitive to shared global structural features
than standard cRMS; in fact, our results show that
LGA scoring system can select structural neighbors
of a given target protein which are only poor align-
ments to the experimental target structure in terms
of cRMS, suggesting the crucial role played by the
effective structural comparison technique in
addition to a high-quality prediction. However we
must caution that even with the good tool, the
alignments corresponding to a hit are still statisti-
cally weak in comparison to false positive domains
with very close alignment scores. This calls for
further efforts to sharpen the alignment tool and
improve the prediction quality.

Second, we only aim to achieve the rather mod-
erate goal of capturing at least one structural
neighbor by structural alignment, which at most
provides a rather partial clue to the biological func-
tion. Indeed the number of structural neighbors of
a given protein can be large and it remains unclear
how much functional information of the target is
contained within a single neighbor of it.

Conclusion and future directions

Here, we have reported a systematic exploration
of the use of distance constraints derived from
SAXS measurement to ®ltering candidate protein
structures for the purpose of protein structure pre-
dictions. This is intrinsically a more complex task
than that of applying distance constraints derived
from NMR where the identity of the pairs of
amino acid residues subject to the given distance
constraints is known, which is not the case for
SAXS. Despite this complexity, our study shows
that the implementation of SAXS ®lter is capable of



Figure 4. A ¯owchart describing our approach to
SAXS-based protein structure prediction, where DLW
indicates diamond lattice walks.
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effectively purifying a set of native structure candi-
dates. Furthermore, we have tested the quality of
our predicted Ca backbones by doing structural
homology searches against the Dali domain library
and the results are very encouraging: in spite of its
lack of local structural details and limited model-
ing accuracy useful information about fold classi®-
cation can be extracted from this procedure which
is potentially helpful to the ultimate determination
of biological function.

For future work, we plan to improve the present
approach along the following directions: First, we
will re®ne the diamond lattice representation with
a volume constraint so that larger proteins are also
well represented and sampled without too much
burden on enumeration, the incorporation of shape
information from SAXS measurements is very
promising for achieving this purpose. Second, we
plan to add local structure and side-chain infor-
mation to our prediction to further improve its
quality. We expect that at this stage the use of
experimental SAXS data will further improve the
prediction quality. Third, we will explore better
approaches to generating a small number of best
candidate structures based on a larger set, either
by optimizing the multi-®ltering strategy or by
using more sophisticated methods such as distance
geometry.

Methods

To summarize our approach to SAXS-based protein
structure prediction, a ¯ow chart is given in Figure 4.
The individual components are described in detail as
follows.

DLW enumeration

We enumerate all self-avoiding walks within the
given ellipsoidal bounding volume containing 55 vertices
on the diamond lattice, where the walk length is decided
by the length of the target protein sequence (roughly
two residues per vertex for small proteins with less than
80 residues). The length of an edge is 5.2 AÊ , and the
major axes are 24 AÊ , 24 AÊ , 32.4 AÊ . In order to eliminate
redundancy, only symmetrically unrelated starting ver-
tices are used; also, by requiring the walk length to be
even numbers, we only need to consider vertices with
even coordinates as starting points, after the above pre-
processing, only eight out of a total 55 vertices are eli-
gible as starting vertices of walks. Depending on the
walk length (up to 38 vertices), the total number of DLW
varies in the range of 106 to 107 and can be enumerated
by a Linux-based PC in a couple of hours.

Threading of a sequence onto DLW

For each DLW, we try to optimize the spacing of resi-
dues along it by using the statistical energy F_stat as a
guide. Each vertex is mapped to a speci®c residue and
from zero to two residues are assigned between each
pair of neighboring vertices. Initially, we align the
sequence uniformly onto the DLW, so that each vertex v
is assigned a residue with sequence number r(v), then
we associate each vertex v with a set of candidate resi-
dues R(v) � {rjr(v) ÿ 3 < r < r(v) � 3}; next, we implement
a greedy algorithm to pick a speci®c residue r from R(v)
for each vertex v, so that the sum of pairwise contact
energy for all pairs of vertices in contact spatially (but
not sequentially) is optimized. This optimization method
is very ef®cient and effective in selecting energetically
favorable contacting pairs of residues which are promis-
ing to be utilized in the native conformation. For the
same purpose Hinds and Levitt used a dynamic
programming algorithm to optimize this threading
process.18

Definitions of physical filters

For each DLW or Ca backbone, we evaluated the fol-
lowing ®lters:

FRg: (radius of gyration) RMS distance from the center
of mass of all vertices (CA atoms) along the DLW (Ca

backbones). This is a useful ®lter for selecting compact
structures. Since Rg can be reliably derived from the
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SAXS data, it is partially overlapping the SAXS ®lter
de®ned later.

Fhp: HP ®tness score26 based on the hydrophobic-polar
(HP) model which counts pairs of contacts between
hydrophobic residues. At the diamond lattice level, we
de®ne contact between two vertices when they are near-
est or next nearest neighbors on the lattice but not adja-
cent along the DLW. The contacts between inter-vertex
residues are also included albeit with 0.5 weight (similar
to what was done by Hinds & Levitt18). At the Ca back-
bone level, two residues are in contact if the distance
between their CA atoms is less than 7 AÊ and they are
not sequential neighbors.

Fburial: burial score26 which measures the extent by
which hydrophobic residues are buried inside the core,
computed by summing the number of residues in contact
with every hydrophobic residue.

Fstat: statistical energy which is the sum of statistical
pairwise contact energy between any two residues in
contact based on the 20 by 20 matrix constructed by
Hinds & Levitt.18 The pairwise residue-residue inter-
action energy is calculated based on the frequencies of
tertiary contacts in a given PDB structure database. We
use the table given by Hinds & Levitt.18

Fsaxs: SAXS score, see later subsection for details of its
de®nition and computation.

Structure comparison

dRMS at the DLW level: we use the distance RMS
(dRMS)30 to do a structural comparison between a given
DLW and the corresponding native Ca backbone with
given residue assignment.

The residue assignment is determined by optimizing
the statistical energy (Fstat) using a greedy algorithm
described above. Since its computation is based on dis-
tance only there is no discrimination between a DLW
and its mirror image. This ambiguity is not resolved in
the present algorithm owing to lack of a chirality
measure.

cRMS at the Ca backbone level: we use standard coor-
dinate RMS (cRMS) to do structural comparison between
our predicted backbone and the corresponding native Ca

backbone.31 This is done by superimposing the above
two structures onto each other and minimizing the RMS
deviation between 90 % of the residues (tolerating a
small extent of errors at both terminals). We try both the
given Ca backbone and its mirror image in the compu-
tation of cRMS and keep the minimum value of cRMS.

Structural homology search tool (LGA)

We use the LGA program developed by A. Zemla for
structure comparative analysis of two protein structures
or fragments of protein structures.23 It has been success-
fully applied to the assessment of recent CASPs.23 The
program can be implemented in two general modes:
sequence-dependent analysis and sequence-independent
analysis. The ®rst mode includes two analysis algor-
ithms: LCS, which is to localize the longest continuous
segments of residues that can ®t under the selected
RMSD cutoff, or GDT, which searches for the largest
(not necessarily continuous) set of equivalent residues
deviating by no more than a given distance cutoff
(DIST). Since we are more interested in the global aspect
of our modeling, we choose to use the GDT (DIS-
T � 5 AÊ ). The LGA generates the following scores as
assessment of the structure comparison: N, number of
residues superimposed under the distance cutoff; RMSD,
RMSD computed on N residues superimposed under the
distance cutoff; LGA_S, (0.00-100.00) calculated with
reference to the number of residues in target protein;
LGA_Q, quality score computed using formula:

Q � 0:1N

0:1� RMSD
:

Among them we choose to use LGA_Q to rank the struc-
ture comparisons between our predicted Ca backbone
and the Dali domain library.

SAXS score function computation

We adopt the score function used by Walther et al.20

The pro®le of scattering intensity associated with a bead
model (where the bead is a vertex or CA atom) is given
as follows using the Debye formula in its pair-distance
histogram form:

I�s� � N � 2
Xnbins

i

g�ri� sin�2pjrijs�
2pijs

where N is the number of beads, s is the scattering vector
with s � k/2p, g(ri) is the pair-distance histogram of all
singly counted pairwise distances and the number of
bins is nbins. To represent the I(s) pro®le, we discretize s
with ds � 0.002 AÊ ÿ1 and the maximal s is set to 0.12 AÊ ÿ1.
Pro®les are normalized to yield I(0) � 1. The score func-
tion or ®tness was computed from:

F � w�1:0ÿ r� � RMS

with

RMS �
�����������������������������������������������������������X

i

�si=smax�m�IM�si� ÿ IE�si��2
r

where r is the cross-correlation coef®cient between the
two scattering intensity curves, w is the weighting factor
chosen to be 10. The term (si/smax)m adds more weight to
differences in the tail of the pro®le (at higher s values). m
is taken to be 3. Smaller value of F corresponds to better
®ts between the experimental and predicted pro®les.

Experimentally, measurement of SAXS pro®les to a
maximal value of smax � 0.12 AÊ ÿ1 is in a range of inter-
mediate scattering angles beyond the small angle region
usually studied. Nevertheless reliable data in this range
are readily accessible and in a recent paper, Svergun and
collaborators21 report data out to smax � 0.27 AÊ ÿ1 for a
number of proteins. We have done some tests of our
algorithm for a reduced smax � 0.06 AÊ ÿ1. Although the
performance is somewhat degraded, use of a SAXS ®lter
is still found to be positive. Clearly, use of data out to
the higher s values is bene®cial.

Evaluation of structural homology using Dali
domain classification and structural neighbors

In the Dali domain classi®cation,22 each domain is
assigned a Domain classi®cation number DCl m n p repre-
senting the fold space attractor region (l), globular fold-
ing topology (m), functional family (n) and sequence
family (p). We used the Dali domain de®nitions (v3.01)
published by Structural Genomics Group at EMBL-EBI
in October 2000 which contains 3689 domains with
different numbers of DCl m n p. Given the target protein,
we ®rst exclude all domain entries that share the same
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DCl m n p number with it because these sequences bear a
25 % or more sequence identity with the target. Then we
prescreen the domain library with the SAXS ®lter and
keep 10 % of them. This ®ltering step effectively elimin-
ates domains which differ signi®cantly in length and
shape from the target. Finally we undertake a one-to-all
LGA structural comparison between the predicted Ca

backbone and the post-screening domain library, and
then compare the domains identi®ed by the above com-
parison with high ranks (top 3) to the correct domain
representative of the target. We call it a hit if both share
the same ®rst three Domain classi®cation numbers (l, m
and n) or are structural neighbors of each other. The
de®nition of structural neighbors is based on the all to
all Dali alignment22 and its criterion is that the z score is
no less than 2. This criterion is relatively strict in de®n-
ing structural similarity so that it is biologically mean-
ingful.
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